爱读书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

应该说,微分和积分为什么互为逆运算,而且为什么通过反求导就能求出区域面积,这大概是在学习微积分的时候,很多人最难理解的一个点。

甚至曾经在很早之前,大家都把微分和积分看作是两个互不关联,毫不相关的东西去看待,直到后面出现了牛顿和莱布尼茨。

考虑到证明的过程是很难直观去理解的,所以李纵才举了这么一个或许并不太严谨,但却意外好懂的例子,把求积分的图,当成是瞬间速度变化的图。

然后求从a到b时间之内,到底走过了多少路程,这是不是就是反求导之后,用大写的F代表原函数,黄色区域的面积就等于F(b)-F(a)。

这正是计算积分十分重要的一个公式,将连续的需要求和的一条条铅垂线的过程,转变成了只需要代入边界的值,一减就能求出面积。

见两人还在犹豫,李纵也是把路程等于速度乘以时间,面积等于底边乘以高,两者都是乘法的这么一个过程写了出来,道:“其实我们不必纠结于为什么路程可以看成是面积。”

“我们只需要知道他们都同样是乘法运算,而且,都是函数关于一滴滴的单位之内,会得到某个值就行了。”

“而且,如果反过来理解,求积分的这个图,用微分去表述,就可以是,在一滴滴的时间之内,面积的变化率。”

见两人还在沉思,李纵便继续道:“那么,假设这种想法是对的,我们已经得知,这两种运算存在着一种互逆的关系,那么,我们可以怎么使用这种关系?”

“是不是就可以求积分了,积分原本是要把很多很多的铅垂线的面积加起来,正常来说,我们人是办不到的,但是如果能把它转换为微分时的原函数,积分是不是就可以计算了。”

“直接代入两个边界的点,一减,答案不就出来了。b点的里程,比如说15里,减去a点的里程,比如说10里,一减,中间的5里,就是我们走过的路程。”

“那么问题来了!这个积分的函数,跟它微分时的原函数,到底存在着一种什么样的关系。”

“或者说,我现在已经知道了积分的函数了,就是等于y=2x,那么,微分时的原函数,是什么?所以是不是就是一次从微分的结果,反推微分的开头的这么一个过程。”

“那接下来我们便尝试着拿一个例子,来求一次微分。”

“比如说原函数y=x2,根据刚刚微分的定义,是不是就可以有以下这个式子:”

图。

“此式子怎么理解,刚刚我们是用t-a的方式,但这样显然是算不出来的,所以我们把t换成x+Δx,代表t比a多了那么一滴滴增量,但是这个增量又是无限小,我们定义无限小不等于0,但是它无限趋近于0。”

“接下来便可以对式子进行运算。”

图。

“正如同前面我们说让t就是等于a,那么很短很短的时间,也就没有争议。这个的Δx,我们把他视为是没有增量,那么这条式子最后,微分出来,等于2x也就没有争议了。”

“当然,前提是,我们定义了无限小,是趋向于0。”

“这正好就是微分的结果跟原函数。”

“接下来,我们可以代入一些数字来测试一下。”

“首先明确,y=x2是路程关于时间的函数,y=2x是路程变化率,也就是速度关于时间的函数。”

“现在我要求y=2x在某一段时间内走过的路程,即这个函数在给定边界范围的面积。”

“就可以变成求出原函数,然后代入边界,最后y=12=1。”

“而反应在y=2x的这个与x、y边界所围成的面积,是不是也是,按照三角形的面积公式,底是1,高是2,1×2÷2=1,也等于1。”

“再代入别的数字,x=2,原函数答案是4,y=2x围成的面积是,2×4÷2=4,也等于4。”

“下面的以此类推,答案完全一样。”

“甚至就是算梯形的面积,其实也是一样的。”

李纵用一个很巧合的例子,来说明在给定边界后,的确可以通过原函数的式子来算出图形的面积。并且计算出来的面积是完全吻合的,这恰恰印证了前面李纵的假设。

虽说这只是个例,但是,此法足以让两人耳目一新。

三角形的面积原来还能这么算,这谁能想到!

然后李纵便道:“其实还有更为严格的证明过程,只是便于你们好理解,我也就拿这个作为例子。”

“假设这就是对的!”

“那么,以前我们是不是写了一条关于圆的方程的式子,是不是也有xy,而且当时我们还算出了边界,如果我没有记错的话,是b点的坐标是四分之一。”

“要是我们也能知道那条圆的方程的式子的原函数,是不是就能够通过直接代入四分之一,当然,起点是0,所以不用算,去算那个小区域S(ABD)的面积。”

两人听完,简直觉得李纵就是鬼才!

这都能让李纵想到!

但是……

接下来,等李纵把圆的方程式子写下来后,这个要怎么求原函数,却是把所有人都难倒了。

“这个式子,要怎么求原函数。”

“方才,我们是瞎猫碰上死耗子,正好通过微分,算出来是2x,那么接下来什么原函数的微分等于(x-x2),再开根号。”

张公绰两人立刻都傻眼了。

甚至,看完了这条式子,前面什么微分、积分好像都忘了,这就是所谓的,你看完,你觉得你自己懂了,其实,你什么都不懂。(图)

“这的确是一条相当复杂的式子,而且微分的过程虽说我们从头到尾都是知道的,但是我们却又不可能从后面往前推。”

“尤其还是这种又有减法,甚至还有开平方的式子。”

“这怎么办?”

“我们化简一下。”

“这就是结果。”

“然后我们先不管前面的x的二分之一方,我们就看后面的这个,(1-x)的二分之一方,是不是就跟我们之前提到的,那个f(m)的公式长得很像。”

“那我们是不是就可以把这个式子,按照f(m)的式子来展开。”

“最后得到。”

“我们再对这个式子求原函数。”

爱读书屋推荐阅读:神级大老板重生相师:名门第一继承人神器召唤人亿万继承者萌宝来袭都市无敌,我有七个恶魔师傅邪气兵皇混花都花都异能王世界第一宠:财迷萌宝,超难哄一身神级被动,从转职开始无敌妖孽妙手小村医娱乐:开局和功夫巨星八角笼四合院:许大茂傻柱你们要老婆不生活中的一百个心理学效应妙医圣手叶皓轩非宠不可:傲娇医妻别反抗辞职之后我的贴身校花顾云初夜凌羽从小警察开始的仕途路新说钮一篇血色浪漫之我是钟跃民我是一条小青龙,开局要求上户口校园青春之混的那些年对手肖镇超穿八十年代散人联盟秦云身份能升级,开局平行世界当皇帝重生2008叛逆少年的逆袭之路最强人抗战:开局一个现代化集团军!圣光并不会保佑你圣医寻宝记1986:东北旧事光灵行传人在高武,半年成神一年统治宇宙轮回剑典我来自末法世界环保大师霸凌我,就别怪我将恐怖复活四合院:眼红系统,全院人麻了许我向你看玄天神医重生香港娱乐圈之倾城之恋陨现之日重生一次,可不是来遭罪的!徒儿下山横推吧,你无敌了万能兵王一身双魂黑帝心尖宠:甜妻很呆萌
爱读书屋搜藏榜:致命赛程:二十轮的博弈阿聪和阿呆精英仙妻:总裁老公宠上天我有一座随身农场重生肥妻:首长大人,强势宠!重生九零小俏媳穿成八零福运小萌包娱乐:重生05,开创顶流时代至尊小神医流年的小船恶龙枷锁清纯校花?当真有那么清纯吗?脱下马甲就是大佬我靠切切切当上太医令剧本恋综里爆红,影帝这热度她不想蹭啊深海有渔歌重生,开局胁迫高冷天后我只想在未来躺平,没想成为大佬练假成真,我真不是修仙者灵气复苏:我,杀敌就变强!全民打宝:幸运爆率疯狂飙!穿书之不可能喜欢男主全球性闹鬼事件神棍俏娘子:带着皇子去种田沈先生命有桃花UZI复出后,IG和RNG同时发来了合同穿成炮灰原配后把权臣娇养了终极一班之签到系统开挂无敌战力情意绵绵汐朝高武:我的影子能弑神我能真人下副本骑士传奇,我的眼中只有古朗基医品凤途我家后院的时空来客穿书之女二要逆袭凌宠我真的很想堕落啊带着系统征服世界吧!岁月逆流重返十八每天奖励一万亿,我的钱堆积如山神豪从开滴滴拒绝美女开始神武都市农门空间:我娇养了首辅大反派玩美房东暗帝:风华绝代之世子妃从恋综开始,成为华娱全民偶像神壕系统之娱乐无极限我负责吃奶直播间十亿网友杀疯了斗兽场之风起云涌
爱读书屋最新小说:鉴芳年她算哪门子表姑娘婉风沉重生矿奴,却成为人类救世主?穿书被鞭打,我抱上黑化首辅大腿京夜婚动与病弱兄长共梦我在板鸭很开心换嫁随军,谁家凶兽奶呼呼呀!殿下,你抢的王妃是顶级大佬野欲诱吻于他怀中轻颤净水迎帆我女朋友是学医的全家偷听心声吃瓜,我赢麻了荒年肉满仓,缺德后娘养歪女主!和死对头双穿,冷面丈夫成了权臣恶毒公主觉醒后,他们都想当驸马开荒躲乱世,我家过的太富裕了!肥妻苟山村养娃,疯批佛子急疯了民国恶女求生游戏苟分日常七零:娇气包大小姐随军闹翻天穿越开自助,办个酒楼做首富她谋六零娇娇作精,糙汉老公带我躺赢前夫处处护青梅,重生改嫁他疯了非分之想七零娇妻萌宠在手,随军护家无忧被换命格后,玄门大佬杀疯了女配她过分美貌撩倒五个男主后,娇美寡妇跑路了刚大一就与女神老师被强制结婚春深囚宦逃荒有空间,嫁绝嗣糙汉一胎多宝守寡后,我逼疯了满朝文武去种田诈尸后,她成了大理寺卿的掌中娇八零:换嫁小渔村,我成全家团宠重生八零小豆丁,手握空间聊天群SSSSSSSSSSSSSS满级神医清穿:救命!太子妃她又在揍人啦锦鲤崽崽穿六零,捡来爹娘宠上天我死后第五年,疯批皇帝还在招魂敲骨吸髓?重生另选家人宠我如宝拒绝SSS级天赋被封杀,我成唯一真神急!死后成了宿敌金丝雀怎么办凤隐锦杀被抄家流放,飒爽嫡女在边关盖大楼!渣男兼祧吃绝户?改嫁皇叔他急了我的暴君系统天天想噶我老公炽吻失氧